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A PRACTICAL ON-LINE FILTER TO) PROCESS GYROCOPASS DATA

Ronald B. Janosko, Captain, USAF
Research Associate

Frank J- Seiler Research-Laboratory.(AFSC)
Uhited States Air Force Academy,, Colorado 80840 :,

Introduction and Prablem :Statemnt

The basic problem addiessed In this paper is that of providing an

accurate real time estimate of a heading direction on a reference test

pad, 'this situation is symbolically depicted in Figure 1. In this figure

MI
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Note: The main concepts in this report were presented at the 1973 AIMA
Guidance and Control Conference, Key Biscayne , Florida, 20-22 August.
This report is a revised and corrected form of AIMA Paper No. 73-841.



the three dimensional slab represents the test pad to which is fixed an

azimuth measuring device. The function of this device is to measure the

angle between a fixed inertial direction and some arbitrary pad reference.

Let us assme that the quantity i is the desired fixed heading vector

and that it is located at an angle A from the pad reference heading

vector •. Because the instrument is sensitive to other variables, we

cannot measure A directly -but-must obtain an estimate of the i direc-.

tion by measuring the angle m formed between the reference 6 and the

indicated heading vector b. .

Much work has been done in modeling the error sources involved in

this process [1,2]. It is not the aim of this paper to derive a new

error model but rather to demonstrate a method by which a reference

heading can be obtained from raW gyrocompass data. Only a simplified
error model will be presented but the proposed technique can be used

equally well with any error model.

In order to demonstrate the proposed method let us assume that only

the platform North-South tilt, TNS, and East-West tilt rate, TE, are

modelled as error sources. Further it is assuned that the difference

between the angle m and the angle A is a linear function of the

modelled error sources. Thus we can approximate the mathematical

relationship between A and m by

m A + C1 TlN + C2 T (1)

Note that in Equation (1) the coefficients C1  and C2 must be

determined along with the heading A.
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A problem arises in that even in the best of error models other

variables not modelled may affect the difference between the measurement

m and the heading angle A. That is to say, an equation in the form of

(1) is most likely rnt an accurate model of the measurement process. In

order to accoimt for these model inaccuracies-we can assume that the

quantity A is variable with time. If A were assumed to be a constant

quantity along'with the coefficiebts C1 and C2 then there would --be

little hope of obtaining long term, real time estimates of the heading

direction. At best all that could be obtained would be average estimates

of A for discrete time intervals. Further, if a standard Kalman filter

were used to try to track these parameters the filter output would

actually diverge [3]. Thus the problem is now to estimate the constant

error model coefficients and to track the variable Ak, where now Ak

represents the value of A at the kth time instant.

A further problem occurs in that the measurement of m will also

bf zorrupted with measurement noise. The processing technique developed

must also account for this fact. Thus Equation (1) can be more

accurately represented by

mk " Ak + C1 TNSk + C2 Vk V (2)

In the above equation vk represents the noise and the subscript k

indicates that the quantities so subscripted are time varying and that

their value at the kth measurement is
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Our task is t•us to develop a method by which the measurements

m1k, T N and can be processed so as to yield accurate estimates
Sk iEk

of the coefficients C1  and C2 while also tracking a time variable

quantity Ak. We will now proceed to derive a method which can perform

the above task.

Method of Approach

Before proceeding to develop the method used to solve the proposed

prcblem, Equation (2) will be rewritten here in a more general form.

To do this the parameters to be estimated will be written as the column

vector Xk, namely

Tk M [A CIP C2 ] (3)

Also the measurement matrix will be defined as a row vector M(k),

that is,

M(k) - 1,TN~hk E~k] (4)

Now using the symbol Yk to represent the measurement mk,

Equation (2) can be written as

"k M(k) xk + vk (5)
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Equation (5) will be referred to as the measurement equation. In the

above equation, vk is the random measurement noise with zero mean and

covariance -k R. In the above it is assumed that the measure-

ment equation is scalar. If more than one heading measurement is to be

processed at one time this approach is still applicable though appro-

priate changes must be made to the equations throughout this paper.

It should be noted here that any error model equation can be used

as long as the resultant measurement equetion is of the saone form as

Equation (5).

In general the value of the state vector at time tk+1 can be

related to its value at time tk by means of the state transition

matrix *(k+i/k). This allows us to write

X14l o(k+l/k) xk + r(k) wk'. (6)

Equation (6) will be referred to as the state equation. In this equation

wk is the system noise and r(k) is the system noise coefficient matrix

at time tk. The system noise coefficient matrix relates the effect that

the systen noise has upon the states. The quantity wk is a random

variable with mean zero and covariance given by EIWk wl -=k

For the present problem it is assumed that the states are constant

between measurements, thus *(k+l/k) - I. Because it was assumed that

the system noise is only in the first state, r(k) can be given as

rT(k) - [1, 0, 01. Thus all quantities in the state and measurement

equations are specified.
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The object of the approach presented below is to allow for varia-

tions in the parameter A by estimating the system noise covariance q.

This will be done by using the residual between the actual measurement

and a predicted masurmernt that is based upon past values of the

states [4,5].

Assume that we have processed the measurement Yk and now wish to

bring the filter and states forward to time tk+l. In the processes of

going forward in time we wish to use that q value which yields the

predicted residual, r(k+l/k), that is the most probable. In other

words, find q according to

max p[r(k+l/k)] (7)

where p[ ] is the probability density function. The q that

maximizes (7) will be denoted by qkA

Let us now define the predicted residual by

r(k+l/k) -Yk+ - M(k+l) x(k+l/k) (8)

In this equation k(k+l/k) is the estimate of the state at time tk+1

given the measurements up to Yk' The mean of the predicted residual

can now be given by
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EIr(k+l/k)] Eyk+1 - M(k+l) i(k+l/k)]

M(k+l) E[xk+l - x(k+l/k)) + E[vk+l] ,

-0, (9) I.

This is by virtue of the fact that the expected value of the measurement

noise is assumed to be zero as is the expected value of [xk+1 - i(k+l/k)],

the error between the predicted state and the true state.

Further the variance of the residual can be given by

E [r(k+l/k)rT(k+l/k)]

FEI[yk~l -M(k+l)X-(k+l/k)] [yk+l - M(k41)X^(k~l)]TI

or

E +(k+l/k)rT(k+ 1/k)]

E'ýM(k+l)tx~ -1 (k+l/k)] + vk+ll IMck+l)[xk+l - (k I/k)] + k4

(10)

Letting ck+1 be the error in the estimate at time tk+1, that is,

k+1 Xk+l - X(k+l/k), equation (1) can be simplified to yield

E [r(k+l/k)rT(k+l/k)] -

E[lck+1Ek~ + Vk+l] [Mck+l)ck+l + V
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or

E+(k+1/k) rT(k~l/k)]

M (k+ 1) E~c~ T I1 MT~k+1) + Elvk+l Ik1

+ M(k+l) E Ik+l vk,1lj + Elvk+l E k+ 1~ k1 )

The residual's variance can now be written as

E -[rkk+i/k)rT(k+1/k)] =

M(k+l) P(k+l/k) MT(k+l) + R(k~l) ,

where the state error covariance matrix is denoted .as

P(k+l/k) E 1k~l •kJl (12)

Recall from the equations for the basic Kaliuan filter that the

system noise covariance enters into the calculation of P(k+I/k) [6].

This relationship can be given by

P(k+I/k) - *(k+I/k) P(k/k) (k+1/k) + q r(k) rT(k) , (13)

or for this problem

qo o\

P(k.l/k) •- P(k/k) 0 0 0 (14)
0 0 0

i,!I
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Now if we assume a gaussian distribution of the residuals for the

scalar measurement case

2ir

p[r(k+l/k)] e 15

where

a' 2. r1r(k~l/k) rT(k+1/k)J (16)

and

= rT(k+i/k) r(k+I/k) . (17)

Thus the variance ca is a function of q. and hence (15) is also

dependent on the quantity q.

This fact allows us to minimize Equation (15) with respect to q

by differentiating it with respect to a2 because 9-ay) is constant.aq

Proceeding with the differentiation and equating the result to zero

we get

1/ it 12 1r 2

S.Lf2.= 2 r e = 0.
2 2, 2a2/f-=(

9



This implies that

FIr2 0
2oj 2a2

which says that the maximum probability occurs when

r2= a 2

or equally when

r2 (k+l/k) = Er(k+1I/k)](8

Now using Equation (13) in (11) we can get

E[r2(k+l/k)] =

M(k+l) ý(k+l/k) P(k/k) .T(k+l/k) MT(k+I)

+ q M(k+l) r(k) ri(k) MT(k+l) + R(k4). (19)

Letting

E [t2(k+l/k)q= 0]1

M(k+l) O(k+l/k) P(k/k) ,'(k+l/k) M (k-l) + R(k+l) ,

we can get from (18) and (19)

1.0)
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r2(k+l/k) -E~r 2(kt1/k) q - 0] if > 0
M(k~l) r(k) rT(k) MT(k~l)

(20)
0 otherwise.

where qkmust be > 0 from the physical weaning of the vs tionc.

Equation .(20) can now be simplified for the specific problem

described. This simplification allows us to write

M(k+l) r(k) r T(k) ~T(k+l1)

[lTNS"iEW]k 11 L 0 0] 1 j

SoTN

{r(k1k)M~+)P0/) otherwise.

If preferred Equation (22) can also be expressed in terns of th-e'

measurement Yk+i as



Si 0

C otherwise.

(22)

FReferring to Equatio (20) wemnote that qk is directly prop6rtiontl

-to the excess of the residual squared over the predicted value of the

residual squared Ahere the predicted value is based ' the assumption

that the system noise is zero. If the residual squared is greater than

the value predicted under the assumption of no system noise, then a

positive value of jk is generated which indicates that the no noise

assumption was most likely false. This value of 4k is then used in
later processings to produce more cons is tency between the residuals and

their predicted statistics.

The filter adqpts to the system noise level as follows. If

Equation (20) yields a non-positive value for qk then the residuals

are within their la values and the assumption of no input noise was

probably true. The residuals are thus behaving according to their

statistics, are relatively small and the filter is operating satis-

factorily. On the other hand if the residuals are larger than the pre-

dicted 10 values, the filter is actually diverging. This then

generates a positive qk value which then causes P(k+l/k) to increase

as seen from Equation (14).

The Kalman gain can be given by [7]

K(k~l) *P(k+l/k) t4T(k.,i) [M(k~l) P(k+l/k) MT (k~l) +R(k~l)]-'

123)2
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We note that increasing Pkk+l/k) causes the gain to increase. The

increased gain then causes the filter to become more sensitive to the

latest data. This allows the filter to follow paranster changes that

become evident as later data is processed. This is in contrast to the..

standard filter that tries to fit constant parameter values to all of

the data _and which in truth is biased towards earlier data. This i. 's

.co3-s about frm: the fact tht .filter gainO decreases as more and more

data are processed and P(k.l/k) decreases [51.

The approach presented cm be used processing one residual at a

time or processing many residuals at once. This later approach is more

statistically significant although does complicate the filter coMputa-

tions. Because the value of qk responds to large measurement noises

as well as to large system noises, a statistical approach to calculate

qk may be preferred. To process many residuals, we use the sample

roan given by

x R (i+l/)

This value is then used in the equations for qk with appropriate

modifications.

The main advantage of using an adaptive filter is that it allows

the estimates of the states to follow the variations in the true states.

13



Thus the filter should yield varying parameters that track the true

parunotors .accurately, rapidly and with minimal computationial burden.

r Figure 2 shows the basic flow of information within the filter.

It should be noted that this differs from the standard Kalman filter

k

x~c,/k)
P (k/k)

x (k+l/k)

now ATA OWUTE

r(k Kqk3

Y~ +/~)Z

{ (k+1/kl)
Figure2. Adative F lte nomtinFoga

C.Lp
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only in the blocks that calculate qN and that udate P(k+l/k) if a

positive ..qN is found.

To test the ability of the adaptive filter to follow the variable

heading Ak a sanple program was simulated using the Fortran IV

"language an a Burroughs B6700 computer. For this simulation it was

assumed that the variation in Akwas iuso idl 'With a 'mean of 15.0

* and a peak to peak variation of 6.0. The period of this signal was

taken to be 24 hours. The tilt and tilt rate used had a period of 1

* hour. and varied as the sine and cosine respectively. Both were assumed

to have a zero mran with peak to peak variations in the tilt of 2.6 and

in the tilt rate of 1.6. The true values of C, and C2 were chosen

to be 0.4 and 0.2.

For this simulation three residuals were averaged and three measure-

ments were processed simultaneously. Each time a new measurement was

available the oldest measurement was discarded and the three newest

measurements were processed. In this manner a new estimate of Ak

could be obtained each time a data point was available. It was also

assumed that the measured heading, tilt and tilt rate were sampled every

10,5 minutes.

The results obtained when the above case was simulated with measure-

ment noise free data being processed through the filter are shown in

Figure 3. For the simulation shown the initial values of Ak, Ci and

C2 were chosen as 12.0, 0.1, and 0.0. In this figure we see plotted

the noise free measurement mk, the true heading AT,? and the heading

estimate obtained from the adaptive filter, AF. Figure 4 shows the



AA

'I.

'B 4b0 Ro--o 6
NLNBER OF POINTfS PROCESSED

Figure 3. Results of Processing True Data through

+ 3 4.0.3
A1 A

+2 +0.2

11 (ALL PLOTS: TRUE-ESTIMATED

11 0 .1

0 0 40 60 to 100
NLR4ER OF POINTS PROCESSED

Figure 4. Error in Parameter E~stimates us ing True Data
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error in estimating Ak, C1 and C2 as a fuzictioni of the nwiber of

points processed. As seen from these two figures the adaptive filter

is able to give quite accurate results.
.0A the other hand when the same situation is simulated using

iuasuremnts-that are corrupted with random noise the filter does not

perform as well. In Figure 5 we so. the results when the measuremewnt

* nis ha astandard- deviation of 1.0. Here the noisy nuasurewent, mk

14A

0 0 4%0 60 O 100
NI)bMHR OF POINTS PROCESSED

Figure 5. Results of Processinug Noisy Data through
the Adaptive Pilter

-is shown along with the true and estimated headings AT anid A.. As

seen in this figure the adaptive filter does not perform satisfactorily

17



for this large a ammurement noise. Even using the averaged residual

the filter still reacts to the masurment noise as well as to the

actual variations in the heading.

In order for this filter to behave properly, the noise level of the

inptit .signal awt be relatively snall. The next portion of this paper

shws how this secondary task can be accomplished.

Noting that in general the measurement signal will bc of a lower

frequency than the measurement noise, it appears that a low.-pess filter

is needed. This type of filter will allow low frequency signals to

pass almost unattenuated while attenuating the higher frequency compo-

nents. M•ay different types of digital filters have been derived that

are able to perform this task. A large number of these are the exten-

sion of analog filters into the digital doeain (8,9].

Each of the available filter types has advantages and disadvantages.

For this application a Butterworth filter will be chosen because it is

monotonic in both passband and in stopband. This type of filter is able

to be represented in digital form by the following squared magnitude

function

I H(OSWT)I' M I____ s-+ tann (qT/2)_

tan in (wT/2)

In this equation n is the nuimber of poles of the filter and T is the

time between samples. The cutoff frequency, wc, is the frequency at

which the filter gain falls off to 3 db.

18



Figure 6 shws the gain of the digital Butterworth filter as a K
function of frequency for various values of n. While at first it may

Wpear that a large value of n is desirable it should be pointed out

that the phase difference between the signal and the filter output

increases with increasing n. Thus the value of n should not be any

larger than necessary if real time data processing is desired.

.3.

r"40 4

Figure 6. Digital Butterworth Filter Gain versus Frequency
for a Variety of Poles

In order to determine the minimun number of poles to be used in the

filter the desired operating criteria have to be specified. We will

assume that the highest signal we want to pass through the filter is

1 cycle/hr., corresponding to the tilt and tilt rate effects. Thus the

cutoff frequency will be 1 cycle/hr. or 27.78 x 10' Hz. Assuming that

that we have a sample every 10.5 minutes gives a saqpling rate of

158.73 x 10. Hz. Further it is specified that at least a 40 db drop

19
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is required at 2 cycles/hr. This implies that the squared magnitude

fwiction equal 10-4 at 55.56 x 10-5 1z. Using these nwbers in Bquation

(25), n is readily calculated to be 3.95, which implies that a 4 pole

Butterworth digital filter can perform the required task.

Proceeding with the design of the filter we first express the

general fourth order Butterworth filter as [10]

H(s) c , Constant (26)
s4 + 2.6 93 + 3.4 s2 + 2.6 s + 1

Replacing s by s/a, where a will equal tan (wcT/2), Equation (26)

can be rewritten

H(s) - (27)
94 + 2.6 as3 + 3.4 a2s 2 + 2.6 ass + &

In this form the constant has been adjusted so that the gain at s 0

is equal to unity.

Bquations (26) and (27) are still in analog form and must now be

transformed into the digital domain. This is accomplished by letting

,s (z-l)/(z+l). This transformation allows the filter transfer

function to be written as

H(z) ,a"lz 4 + 4z3 + 6z2 * 4z + 1) (28)
C"Z4 + OZ3 + yZ 2 + 6Z E

20



The Greek synbols used in Equation (28) are defined by

a 1 + 2.6 a +3.4 a2 + 2.6 a3 + a 4

S-4 - 5.2 a+ 5.2 a3 + 4 a 4
Y - 6 - 6.8aP + 6 a4  (29)

- - 4 * 5.2 a - 5,2 a0 + 4 a4

-. - 1 - 2.6 a + 3.4 a2 - 2.6 a0 + a4

and were obtained after algebraic simplification of the resulting

equation when the s to z transform was used in Equation (27).

In order to express Equation (28) in term of measurement sample

tinms a few more substitutions are required. First Equation (28) is

multiplied by z. 4 /z, 4  to obtain

H(z) a 4(l + 4z' 1 + 6z- 2 + 4z-3 + z' 4 ) (30),

S+ SZ" 1 + yZ" 2 + 6Z-3 + FZ'4

Recalling that the transfer function relates the output of a system to

its input, Equation (30) can be written as

Yf(z) ,4(], + 4z- 1 + 6z- 2  + 4z- 3  + (31)

Ym(Z) a + z"Z1 + yZ"2 + Sz-3 + CZ"4

where Yf(z) is the filter output and Y1n(Z) is the filter input.

21



Equation (31) now relates the output of the filter to the input in the

z plane. The transformation to the tire sanpied domain is nOW rather

straightforward.

This process is begun by expressing Equation (31) in block diagram

form. Figure 7 is the result of performing a direct transform from the

T, Yf(nT)

FigureZ- 7.-okDarmofDgtlFle

A2



equation of the transfer function to its block diagram form. Also in

this figure it is shown how the z-1  block relates to the samples,

that is, a block whose tramsfer function is z-1 represents a delay of

one time sample. This block diagram form now allows the equation that

relates the filtered output to the input to be written as

QYf(nT) + PYf(nT-T) + TYf(lnT-2T) + SYf(nT-3r) + £Yf(nT-4T)

AYm(nT) + BYm(nT.T) + CYm(nT-2T) + DY (nT-3T) + EYm(nT- 4T)

(32)

where the symbols used are defined below.

A - a4

B - 4 ag4

C - 6 a4

D - 4 a4

B - a4

0 1 + 2.6 a + 3.4 a2 + 2.6 a3 4 a4

S - 4 - 5.2 a + 5.2 a3 + 4 a4

y 6- 6.8 a 2 + 6 a 4

6 - 4 + 5,2 a - 5.2 a 3 + 4 a4

c 1 - 2.6 a + 3.4 a 2 - 2.6 a3 + aR4

It should be noted that Equation (32) is the filter realized i.,

direct form and may not be the best to use for the processing of actual

23
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data. The subject of how to realize the filter as well as nore details

on the s and z transform are covered in many texts mnd the interested

reader is referred to some of them [11,12,13,14].

Equation (32) indicates that the present filter output Yf(nT) is

related to the last four filter outputs as well as to the last four

measurements as well as the present measurement Y (nT). It is thism
dependence on past measurements as well as past outputs that introduces

the increasing phase difference between the input and output. The order

of the filter determines how many past data values are to be used. It

is for this reason that the order of the filter should be kept relatively

small. Also the lower the filter order, the easier it is to program.

The results obtained when noisy data were passed through the digital

filter just presented are shown in Figure 8. This figure shows the true

17i

I: I

12 ' d

0 20 4) 860 80
NUMBER OF POINTS PROCESSED

Figure 8. Results of Processing Noisy Data through
the Digital Filter
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signal, mr the measured signal, Ik' and the filtered output, mf.

It should be noted that the filtered output is a large improveuent over

the rw data in indicating the true signal. The phase difference is

also evident in this figure.

Rsults and Conclusions

The results obtained when the noisy data is first passed through.

the digital filter and then through the adaptive estimator are presented

in Figure 9. In this figure we see the actual heading angle, Ar, the

16 ~
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•14A --- AT Y;,,

12., ,4.,
i ---_4

MeER oMz'S-FRzESSIP

Figure 9. Results of Processing Noisy Data
through both Filters
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actual wwuiromeAt, i, the filtered measurement and the estimated

heading angle A,. COparing this figure with Figure 5 it is noted that

digital processing of the measurement is indeed in improvement over

passing the raw data directly into the adaptive estimator.

Using actual gyrocompass data has been investigated and som results

are presented in Figure 10. This figure shows the results of passing

normalized raw gyrocompass data through the digital filter as well as

0 got. do 11 1 bo

NCW0ALIZED TIE SCALE

Figure 10. Results of Processing Actual Gyrocompass Data
through the Digital Filter

depicting the normalized raw data. No statement can be made as to how well

this approximates the true heading angle because this fact is not con-

tinuously known. The passing of this digitally filtered data through the

adaptive filter could not be accomplished because the concurrent tilt and

tilt rate L 'ormation was not available.
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Uased upn the results obtained icing the similated data, where a

coquaison can be maed to the truth, it appears that the proposed process

is able to satisfactorily track a variable heading while simultaneously

solving for error-model coefficients. This system can be satisfactorily

used for real tim data processing because the totltf requir-ed to

dig .i tally filiter and then to adaptively estiftte the parameters is much

less than the tin between samp'les. Consequently, this anayil tech-

nique should be of great value in the determinat ion 'of a continuous headinmg

reference that can be used us a laboratory standard.

Theoretically, this procedure can be modified to further improve the

azimuuth msasureimnt accuracy of a gyrocommpassing system. The provision

for the incorporation of additional measurable error model terms allows
for this amilioration.
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